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CONTRACT FULFILLMENT STATEMENT

This final report is submitted to National Aeronautics and Space Admin-

istration, Manned Spacecraft Center in completion of Contract NAS

9-12360. It describes the studies and analyses of the adsorption and

desorption of chemical components on activated charcoal used in the

Apollo breathing canisters.

M. L. Moberg,'President
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Technical data contained in all of the pages of this report furnished

in connection with Contract NAS 9-12360 shall not be used or disclosed,

except for evaluation purposes, provided that the government shall

have the right to use or disclose this technical data-to the.extent pro-

vided in the contract. This restriction does not limit the government's

right to use or disclose any technical data obtained from another source

without restriction.
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ABSTRACT

A study of the decomposition of various compounds adsorbed

on charcoal was made, with a view toward providing a critical

appraisal of previous data from charcoal adsorption studies.

It was found that thermal decomposition occurs at tempera-

ture lower than previously suspected during the charcoal stripping

process. A discussion is presented dealing with the various types

of reactions found. A rough, quantitative scheme for correction of

previous analytical results is developed and presented.
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FOREWORD

This study was conducted by the Analytical Research Labora-

tories, Inc. , Monrovia, California under Contract NAS 9-12360 for

the Manned Spacecraft Center, Houston, Texas. Mr. W. J. Rippstein

of NASA was the technical monitor.

Project Manager for ARLI was Mr. N. W. Hultgren with overall

review and consultation from Mr. M. L. Moberg. Mr. Hultgren per-

formed mass spectrometric analyses and was responsible for data re-

duction, computer studies, and report preparation. Assisting in gas

chromatography were Messrs. C. L. Deuel, H. C. Harper, and A. C.

Bogaardt, while emission spectroscopic work was performed by Mr. K.

Inouye.
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I. INTRODUCTION

During the analyses of charcoal adsorbents on several previous

contracts (References 1 - 4), a list of some 250 compounds has been

established (Table 1) of substances that have been desorbed from char-

coal at one time or another. The problem is presented as to whether

any of these compounds are "artifacts". That is, have they been formed

during the interval of time between the use of the charcoal as an adsor-

bent and the final analysis by gas chromatography and mass spectroscopy.

During this period vapors have been adsorbed on the charcoal and exposed

to the presence of other compounds either on or passing through the char-

coal. The vapors have been stripped in an operation which involves expo-

sure to high vacuum for 1 hour and heat of about 200 0 C for 45 minutes.

There has been a possible spiking in the temperature profile that may rise

to 240°C for a few minutes. The compounds are condensed in liquid nitro-

gen and diluted with helium before passing through the gas chromatograph

column. The purpose of this program is to determine, where possible,

what changes have been produced on the composition of the original adsorbed

gases.

II. TECHNICAL DISCUSSION

A. STRIPPING OF CHARCOAL

The major likely source of any changes is during the stripping

process. The standard stripping process as used on the Apollo charcoals

has been to place 50 g. in a 200 ml. round-bottom flask placed in a Glas-Col

140 watt heating mantle. The flask is connected to a vacuum system pumped

by a mercury diffusion pump. The gases desorbed from the charcoal are

passed through a U-tube trap kept at dry ice temperatures to adsorb water,

then through a Schultz trap at liquid nitrogen temperatures to adsorb the

remaining condensables. Previous experience has shown the Schultz trap

to be effective and to adsorb nearly all of the condensables. The dry ice
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trap adsorbs most of the water, and a generally insignificant amount of

the remaining condensables. The flask containing the charcoal sample

is gradually opened to the vacuum system to avoid a too fast rush of gas

through the traps.

The powerstat on the heating mantle is then turned on to 100

volts for 15 minutes and then reduced to 45 volts for 45 minutes while the

desorbed gases are trapped. The temperature of the charcoal as measured

through a thermometer well reaches about 2100 C and then decreases to

about 190°C where it stays, while the temperature of the heating mantle,

as measurel by a thermocouple rises to 2400°C and then decreases to 2000°C

where it stays constant. It is not unlikely that portions of the charcoal

nearest the heating mantle reach 2400°C while the bulk remains cooler.

In order to determine what possible metal catalysts could be

present two samples of Type AC charcoal were ashed and analyzed by

emission spectroscopy. One sample was ashed in a platinum crucible,

and the other in a gold crucible. There was approximately 1. 5% ash from

each firing. Qualitative emission spectrographic analysis showed the ex-

pected common elements; Mg, Al, Ca, Fe, K, Na. The results are

summarized in Table 2. The trace of gold in the gold crucible indicated

some fusion with that container. The gold crucible was used because of

the possibility of platinum contamination in the platinum crucible, and

even trace quantity of platinum may well have provided the catalyst sought.

No platinum was detected. The appearance of the charcoal ash was inter-

esting in that it showed a possible nonhomogeneous nature of charcoal.

Some charcoal granules provided a gray ash, some had a greenish cast,

and others were off white. This color variation may also have been caused

by differences in degree of oxidation in that continued ashing seemed to re-

sult in more off white coloration. The ash was blended before taking the

emission spectrographic samples, so possible content variation was not

determined.
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B. DISPLACEMENT STRIPPING

In the effort to determine whether the observed decomposition

of compounds was due to adsorption on the charcoal or due to the effects

of heating, or to a combination of both, a technique was sought that would

strip the charcoal without the application of heat. A modification of dis-

placement stripping was the first technique attempted.

Classical displacement analyses essentially consist of placing

a sample on one end of a suitable adsorbant column, then effecting separa-

tion by passing a carrier gas containing the vapor of a substance more

strongly adsorbed than any of the components of the sample through the

column. The strongly adsorbed displacement substance will then force

the sample to move down stream to new adsorption sites, where the vari-

ous fractions displace, in turn, the others less strongly adsorbed. In this

manner, the components arrange themselves according to their order of

increasing affinity to the adsorbant and eventually emerge in succession

from the end of the column. This method obviously leaves the adsorbant

saturated with the displacement substance.

Dr. C. S. G. Phillips of Merton College, Oxford University,

long recognized as one of the leading authorities in chemistry and gas

chromatography, has suggested, in private communications, that we might

find a modification of displacement chromatography, as frequently employed

in his laboratories, useful in stripping charcoal.

Dr. Phillips has suggested that the classical method be some-

what what modified. Instead of introducing the displacement substance with

the carrier gas, he proposed the addition of a discrete quantity. The adsorp-

tion capacity of charcoal is greatly reduced at higher temperatures; there-

fore, this slug would be moved down the column by chasing it with a band of

localized heat. The advantages of this system are that the contaminants re-

moved would not be subjected to a thermal soak (only a narrow band of dis-

placement material would be subjected to heat); rather they would be partially
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separated and stripped from the charcoal. This would effectively concen-

trate some of the lower level compounds and permit greater reliability

in compound separation and identity if these separate fractions were indi-

vidually trapped and chromatographed. The charcoal would be left in a

clean, zero state for further use.

If catalytic conversion of compounds should occur primarily

during the thermal-vacuum desorption process then one of the most cer-

tain ways to distinguish between compounds present in the spacecraft atmos-

phere and those formed from the action of the charcoal would be to provide

an adequate alternate stripping procedure which would suppress the cataly-

sis. A comparison of the desorbates from the two methods would leave little

doubt as to those compounds present in the spacecraft. For these reasons,

efforts were directed toward developing the displacement analysis using a

heated mcving solvent zone.

The first hot solvent displacement apparatus consisted of a ring

burner mounted on a screw drive system to allow vertical travel of the

burner at a rate of 5 min/inch. In the center of the burner was a 14 inch

length of 3/8 stainless steel tubing, which contained the charcoal to be

desorbed. The upper end of this tubing was teed to a septum for injection

of the displacement solvent and admission of nitrogen (or other selected)

carrier. The lower end of the tubing led to a thermoconductivity detector,

then to a cryogenic trap. To test the system, samples of acetone were

injected at the top of the column into the carrier of nitrogen just below the

ring burner, which then started descending the column, driving the acetone

before it. Tests utilizing this vertically traveling flame did not produce

definitive information. Acetone injections of up to 5 p 1 produced no notice-

able change in response of the thermal conductivity detector at the end of

the flame travel (at which time the acetone should have been eluted). In-

jections of the same amount of acetone in an unpacked column (without
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charcoal) produced sharp, well-defined responses. Apparently the acetone

peak was either broadened by the charcoal, or the acetone was not desorbed

by the flame. After the flame (moving heat zone) stripping, the charcoal

sample was transferred to a vacuum flask and desorbed on the vacuum rack

in the standard manner. This charcoal appeared to be no more contaminated

than charcoal stripped in a vacuum oven, with benzene constituting the major

desorbate and acetone representing a minor fraction. Apparently the acetone

was desorbed.

A sample of "as received" charcoal was divided. One portion

was vacuum thermally stripped, and the other subjected to displacement

stripping with chlorobenzene. The thermal-vacuum desorbate consisted

of large quantities of many compounds (as expected), but the displacement

strip indicated very little in the way of desorbate as monitored by the ther-

mal conductivity detector.

To achieve more uniform heating with a localized heat zone,

the vertical flame travel was replaced by a horizontal travelling electrical

heater on an Heraeus combustion furnace. Several runs were made using

a helium carrier with a thermocouple placed 1 1/2 inches from the exit of

the tube. By plotting the temperature as a function of the heater position in

its travel and varying the heater and travel speed, optimum conditions were

determined to achieve the greatest temperature gradient with the least pre-

liminary heating of the charcoal by conduction. The localized heat zone

could be varied from 650 0 C, at maximum settings, to a low of 350 0 C. Again

using chlorobenzene as the stripping agent, a sample of as received charcoal

was stripped. The desorbates were collected in LN
Z

then analyzed. Numer-

ous trace quantities of material were found, with benzene, Freon 113, chloro-

form, and chlorobenzene being the only constituents present in significant

quantity.

Results were not encouraging with this method of stripping. A

relatively insensitive thermal conductivity detector coupled with limited
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charcoal sample size is probably responsible for poor desorption detection.

Optimization of stripping solvent quantity, heat, and rate of travel may

well produce stripping nearer to ideal.

C. THERMAL DECOMPOSITION

The results of stripping small quantities of compounds from

charcoal at 1800 C, parallel modes of thermal decomposition that have

been reported to occur only at higher temperatures. The very stable com-

pounds such as hydrocarbons show no appreciable change while esters and

halogenated compounds form a mixture of products. Typical reactions are

found to be dehydrogenation, dehydration, hydrolysis, dehalogenation and

isomerization. These are described as follows:

1. Dehydrogenation of Alcohols and Alkanes.

Alcohols, according to the literature are dehydrogenated

in excellent yields on hot copper in the temperature range 2000 - 300°C.

Molecular hydrogen is evolved and the products are aldehydes or ketones.

Dehydrogenation of methanol in air over hot silver or copper is a standard

method for making formaldehyde. The hydrogen is oxidized to water and

provides enough heat to maintain the reaction. Tertiary alcohols do not

lose H 2 but may lose H2 0 if the temperature is sufficiently high. The name
"aldehyde" comes from alcohol dehydrogenation.

At high temperatures it is known that hot activated char-

coal dehydrogenates cyclopentanes to cyclopentadienes. It will also convert

cyclic alkanes to aromatic compounds.

2. Isomerization.

Isomerization, though not yet definitely encountered in

this program is a possibility. For example, it has been reported that at

room temperature an equal mixture of C4H10 hydrocarbons becomes 4/1

isobutane/butane. This equilibrium occurs rapidly in contact with a catalyst
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of aluminum chloride and hydrogen chloride at 27 0 C, and it is conceivable

that similar reactions may occur on hot charcoal.

3. Dehydration of Alcohols.

Dehydration of alcohols is a moderately common

thermal reaction. The order of ease of removal of water is tertiary

> secondary >primary. Generally, the hydrogen is removed from the

carbon that is poorer in hydrogen. Thus 2-pentanol usually dehydrates

to 2-pentene rather than 1-pentene.

CH
3
CHOHCH2CH 2 CH

3
) CH

3
CH = CHCH 2 CH

3
+ H 2 0

ot----- CH
z

2 CH - CHzCHzCH
3 t H20

Dehydration of alcohols also is typically acid-catalyzed and rearrange-

ments are common. The sulfuric acid dehydration product of n-butyl

alcohol is 2-butene rather than the expected 1-butene. 2-butene is the

thermodynamically more stable product. Also alkyl groups will fre-

quently migrate within the structure as shown in the acid catalyzed

dehydration below:

CH 3 ,OH

3- - c - CH

CH
3

H

-H 2 0

-H 2 0

-H20

CH 3 CH 3

H
3
C- C = C - CH

3

CH 3

H3C - C -
H

CH 3

H3C - C -
CH 3

C -

CH3

C =

H

CH 2

CH 2
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4. Dehydrohalogenation.

When intramolecular degradation occurs, hydrogen

and halogen atoms combine from neighboring atoms to form inorganic

acids and an unsaturated organic product. Related to this degradation

mechanism is straight dehalogenation. Probably when small amounts of

moisture are present, a pair of neighboring halogen atoms combine and/

or are displaced from the structure and an unsaturated product is formed.

5. Hydrolysis of Esters.

Esters are usually more thermally stable than their

corresponding acids. However, the esterification reaction has a definite

equilibrium between the alcohol, acid ester, and water. Under selected

thermal conditions and probably charcoal catalytic acitvity, there should

be some saponification of esters merely in the presence of water.

D. DECOMPOSITION EXPERIMENTS WITH FREON 113

Halogenated compounds have been indicated as being the prime

concern of the technical monitor. Freon 113 is used so extensively and is

present in such large concentration in the charcoal desorbate, that its role

as the principal halogen contributor must be considered. Essentially all

of these adsorption-desorption efforts have produced the same results, with

variations in operational parameters resulting only in differences in the

extent of conversion, with essentially no differences in the compounds formed.

Freon 113 was found in this program to partially decompose to

chlorotrifluoroethylene and dichlorodifluoroethylene. Partial decomposition

of Freon 113 under these conditions has not been reported before, though

the systhesis of chlorotrifluoroethylene from Freon 113 is of major commer-

cial importance for the production of polychlorotrifluoroethylene.

Essentially, conversion of Freon 113 is accomplished by displace-

rient of a molecule of chlorine to form the corresponding unsaturated com-

pound. To a much lesser extent (averaging 2-3% of the total conversion)
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CIF is displaced to form dichlorodifluoroethylene. Mechanisms by

which these conversions occur have not been verified, but possibly these

steps follow:

1. Cis- elimination from a four-membered ring transition

state as:

F C1 F C1
It I I

F-C-C-F F-C - C-F .- C12

C1 C1

2. Free radical formation as:

I C1 F C1
I I I !

Initiation F - C, - C - F - F - - C - F + C'

C1 C1 C1

F ;1 C1
Propagation F - + - C - F F - C C - F . Cl'

C1
F C1 F C1 F C1

Io I ! I I

Termination 2 F - C - C - F F - C C - F + F - C - C - F
!to ' I

C1 C1 C1

The latter mechanism does not require a coplaner arrangement of four

atoms as the former does, and allows rearrangements to occur on the

free radicals. Several other mechanisms could be postulated, especially

if catalysts and/or other reactants are considered. Distinguishing the

causitive mechanisms would involve many experiments involving various

isomers and pressure-temperature effects. For example, if it could be

demonstrated that G1 Cl were converted to F - C C - F
F -C = C - F

C1
while F was not, then the free radical mechanism wouldF C F-C

C1

seem unlikely. While these conversion processes would be of academic

interest, the establishment of the mechanisms experienced would probably
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contribute little to the purpose of this program except as a predictive

aid for original adsorbate concentration, Both charcoal and heat are

necessary components of this conversion, since no changes have been

noted in the presence of one without the other.

In order to compare the differences in the desorption

products between compounds that have been adsorbed over a long period

of time and compounds that have been introduced all at once, a Sage

Infusion Apparatus with a 5 p 1 syringe was assembled to provide an econ-

omical supply of Freon 113 in a carrier gas at ppm levels. This unit

delivers 0. 33 p 1/hr. into an oxygen stream flowing at 30 cc/min. Cal-

culations indicate that such a combination should result in a Freon 113

content of 35 ppm. The stream is split through a tee and each half

directed through an adsorption column. Individual flows are controlled

by a needle valve located at the head of each adsorption column. Because

of some concern over possible losses past the syringe plunger and around

the needle during slow injection rates, two test runs were performed. In

the first, one microliter of Freon 113 was injected rapidly through the

system. Nitrogen was substituted as the carrier gas and the adsorption

tubes were replaced with a cryogenic trap. A second 1 p. 1 sample was

then introduced through the same system over a period of 3 hours, and

the sample trapped in a second cryogenic trap. A comparison of the

Freon trapped indicated a large loss through the syringe. However, a

replacement syringe in a duplicate test suffered very little or no loss

during the 3 hours injection. This system was used to provide the Freon

contaminated gas.

The charcoal adsorption tubes were 4 inch lengths of

1/2 inch stainless steel tubing. With a glass wool plug in either end

serving as retainers, these tubes would hold approximately 4 grams of

charcoal. Swagelock fittings were used to connect them to 1/4 inch tubing

for gas flow.
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Freon was adsorbed on charcoal in the adsorption tubes

using an oxygen carrier. This charcoal was transferred to the vacuum

rack and desorbed without heating. A small quantity of Freon 113 was

desorbed. The same sample then was desorbed using heat and vacuum.

This desorbate consisted of large quantities of Freon 113 plus chloro-

trifluoroethylene, with trace amounts of dichlorodifluoroethylene. This

experiment was repeated with elimination of the cold vacuum strip. The

results were as before, e. , large quantities of Freon 113 and chloro-

trifluoroethylene, with lesser quantity of dichlorodifluoro ethylene.

A 1 p1 sample of Freon 113 was added directly to 4 g.

charcoal and immediately thermal-vacuum desorbed. The results were

the same as noted with the oxygen carrier and slow adsorption.

To investigate the effect of sample size and dwell time

on the charcoal, 300 p 1 were directly added to 4 g. of charcoal. Immedi-

ate cold vacuum desorption produced only Freon 113. This sample was

sealed under vacuum and stored at room temperature for 72 hours. Cold

vacuum stripping again produced only Freon 113. The sample was then

heated and vacuum desorbed. The quantity of chlorotrifluoroethylene

recovered overloaded the detector system so that desorbates other than

Freon 113 could not be determined.

Duplicate experiments were run in which Freon 113

without charcoal was maintained at the stripping temperature for one

hour, then was moved through the vacuum system as a desorbate. These

samples showed no decomposition.

Freon 113 was added to a sample of firebrick and

followed by thermal-vacuum stripping, again no evidence of decomposition

or conversion was observed.

This group of experiments conclusively suggests that

Freon 113 undergoes significant conversion (over 50% during some of these
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tests) to chlorotrifluoroethylene and to a much lesser extent to dichloro-

difluoroethylene when exposed to both charcoal and heat, but not to either

singly. It could be argued that a fraction of the Freon 113 is very tightly

bound and this fraction decomposes at room temperature to yield CTFE

which is also tightly bound and does not desorb until heated strongly.

However, this argument is refuted by the observations that CTFE is much

more volatile than Freon 113 and would be expected to be held much less

strongly. A series of tests was run in which up to 20 p1 of Freon 113 was

adsorbed on 4 g. of charcoal and thermally-vacuum stripped in an effort

to resolve the destiny of the chlorine atoms that were removed in the for-

mation of CTFE.

No C12 , HC1, or other chlorinated compounds, other than

CFC1 = CF 2 were found in any significant quantities in the trapped (in LN
2

)

gas phase. The indications are that the chlorine remained on the charcoal

as water soluble chloride ions. Quite logically it is expected that any free

halogen evolved is immediately reduced to ionic form on the active sites of

the charcoal. In dealing with small amounts of sample and adsorbent, there

is always a degree of uncertainty but the experimental data has been quite

consistent. Table 3 shows the results of these tests.' The first 2 columns

show the compound and quantity of material added to 4 g. of charcoal.

The amount of C1i in 4 g. of charcoal that was extractable

in H2O and total C1 obtained upon combustion of the charcoal with the added

compound before the charcoal was stripped is represented by "before strip-

ping. " Chlorides remaining on the charcoal after thermal-vacuum treat-

ment are indicated as "after stripping. " Finally, the amount of chlorine/

chlorides that were collected in liquid nitrogen traps during desorption

(vacuum-thermal stripping) is shown in the last column. This material was

titratable as chloride ions representing either HC1 or chlorine.

-12-
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Chlorine recoveries indicate an order of magnitude

of 50% conversion of Freon 113 and methyl chloroform to other compounds.

This consistent with previous GC data. The total chlorine content of the

charcoal is essentially equal to the water extractable chlorine content.

This indicates that no significant amount of organic chlorides remained

adsorbed on the charcoal.

Experiments were done with the adsorption and desorp-

tion of Freon 113 as a function of the amount adsorbed and of the time

adsorbed on the charcoal. One set of experiments were performed in which

1, 10, 100, and 500 p 1 of Freon 113 were put on 4 g. of charcoal and ther-

mal-vacuum stripped immediately. Fractions of the desorbed gas were

analyzed by gas chromatography for relative amounts of Freon 113 and the

major decomposition product, chlorotrifluoroethylene. A second set of

samples was stripped after two days of being on the charcoal. The results

are summarized in Table 4. The conclusion is that the amount (mass) of

chlorotrifluoroethylene produced is independent of the amount of Freon 113

or the residence time on the charcoal. Several assumptions drawn from

these data are as follows:

a. Conversion occurs only during the stripping process.

b. The bulk of the Freon 113 is stripped before decom-

position occurs.

c. Only the most tightly bound molecules located within

the "hot zone" or bound within micropores for some time decompose.

E. QUANTITATIVE RESULTS OF DECOMPOSITION EXPERIMENTS

Rather than further concentrating investigative efforts in deter-

mining how and why compound conversion on charcoal occurs, a direct

approach was taken to determine what conversion occurs with known com-

pounds. This approach provided data immediately applicable for the correc-

tion of previously reported Apollo canister data.
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One microliter of sample was added to an evacuated glass

flask containing 4 g. of charcoal. Exposure time was varied, but no

appreciable differences were noted in the extent of conversion or of

compounds formed with exposure time variances of minutes to several

days. The flask was then attached to the vacuum rack and the charcoal

vacuum-thermally desorbed, using the same temperature program

established for and used on Apollo canister study. The same charcoal

sample was recycled many times with various compounds without indi-

cation of differences in reactivity from fresh charcoal.

Most reactive compounds added to charcoal appear to undergo

some decomposition upon vacuum-thermal desorption. Generally, the

n-paraffins are least affected and with increasing substitution, unsatura-

tion, and functionality, conversion or decomposition increases in a manner

closely resembling thermal degradation fragmentation.

The direct addition of selected compounds to charcoal followed

by desorption has been performed as a screening operation. Data reduc-

tion has consisted of peak area approximation only with no response correc-

tions and therefore should be considered semi-quantitative. Propane,

isoprene, acetylene, ethylene, benzene, toluene, and xylene were found not

to react on charcoal under the conditions of the desorption. These results

are consistent with the general stability of hydrocarbons.

Tetrahydrofuran - there is an apparent dehydrogenation of

approximately 20% of the sample to furan.

Equation: THF-- 0. 8 THF + 0. 2 Furan

Ethanol - the conversions experienced with ethyl alcohol

do not seem to be products of a single mechanism since this material

appears to undergo both scission and oxidation.

-14-



3005-F

Equation: EtOH-, 0. 95 EtOH + 0. 03 MeOH + 0. 02 Acetone

Beilstein (Reference 5) - Ethyl alcohol is claimed to be

only slightly decomposed at 700°C in hard glass containers. In metal con-

tainers it decomposes at 2500°C - 3500°C, at 25 atmospheres of pressure

into acetaldehyde, ethyl acetate, ethylene, methane, ethane, CO, CO2, and

hydrogen.

Acetone - yields about 20% ethanol.

Equation: Acetone -0. 8 Acetone + 0. 2 EtOH

Beilstein - Acetone is stated to be fairly stable without

a catalyst. On aluminum silicate, however, it decomposes at 170°-2600°C

to isobutylene and acetaldehyde while at 3500°C it decomposes to isobutylene,

acetic acid, and other products.

Ethyl Acetate - yields 30% ethanol and 10% methanol.,

Equation: EtOAc -S 0. 6 EtOAc + 0. 3 EtOH + 0. 1 MeOH

Isopropanol - decomposes to acetone and propylene.

Equation: iPrOH - 0.8 iPrOH + 0. 15 Acetone + 0.05 C 3 H 6

Beilstein - Isopropanol decomposes to propylene and water

at 105 - 110°C, on NaHSO 4 . It decomposes at 4000°C on unglazed clay frag-

ments. Other products that have been isolated from various catalysts are

acetone, propylene, methyl isobutyl ketone, diisobutyl ketone, mesitylene

oxide, propane, 2-methylpentane, 2-methylpentene, and 2-methylpentadiene.

Butanol - the butanols are found to dehydrate fairly easily to a

mixture of butenes.

Equation: Butanol-*0. 7 Butanol + 0. 3 Butene

Beilstein - Normal butanol is reported to decompose at

5300°C to butene-l and butyraldehyde, at 6000°C to butadiene and at 650°C

to benzene, ethylene and cyclopentadiene.
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Over nickel-copper catalyst at 224-257 0 C it decomposes

to propane and propylene.

2-Butanol is reported to decompose at 350°-400 C to

methyl ethyl ketone, at 450°C to 2-butene, at 600°C to butadiene, acetone

and ketene, and at 6500 C to benzene, cyclopentadiene, toluene, m-xylene.

At 1500°-250°C over copper catalyst it decomposes to

methyl ethyl ketone.

Isobutanol decomposes to a mixture of butenes, iso-

butylene, and isobutyraldehyde.

Tertiary butanol decomposes to isobutylene and water.

Methyl ethyl ketone - appears to yield a mixture of acetone and

butanol.

Equation: 0. 8 MEK + 0. 1 acetone + 0. 1 butanol

Beilstein - Methyl ethyl ketone decomposes to ketene

and methyl ketene while at 580°0 C it yields also CO, methane, and ethylene.

With an aluminum silicate catalyst it yields, at 2500 C, acetic acid and 3

methyl pentene-2 while propionic acid and 2 methyl butene-1 are products

at 400 0 C.

Freon 113 - on numerous tests has decomposed to yield an

average of 20% chlorotrifluoroethylene and 1% dichlorodifluoroethylene.

Equation: F-113-.'0.8 Fl13+ 0.2 C F 3C+ 0.01 C F2C12

Table 5 is a summary of the above decomposition reactions.

F. NUMERICAL CORRECTIONS TO PREVIOUS ADSORPTION

DATA
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1. Rationale for Development of Equations.

The previous experimental work in this program has shown

that many compounds decompose to some extent when adsorbed and then

stripped from activated charcoal. It is desired to develop a method to

calculate the composition of the initial adsorbate, given the composition

of the desorbate. The problem is mathematically most tractable if it is

assumed that each compound undergoes a fixed percentage decomposition

to definite fixed ratios of products, independent of the amount of other

constituents present. This assumption is true in the case of a decomposi-

tion reaction of first order in the decomposing species and the time of con-

tact with the charcoal is held constant. Stating this in another form, the

implication is that all occupied sites offer the same amount of decomposi-

tion whether they have high, low, or similar heats of adsorption, assuming

that the adsorbate concentration is limited to probably 5 mg. per g. of

charcoal. A converse set of plausible assumptions would be:

a. There are sites of widely differing adsorption

energies on the charcoal.

b. The sites of low energy are emptied so rapidly

in the stripping process that no significant decomposition occurs.

c. Most of the decomposition occurs to the molecules

held to the high energy sites.

This set of assumptions would eventually yield a fixed

amount and type of desorbate (dependent upon the same adsorbent) inde-

pendent of the amount of adsorbate. This extreme would result in simple

correction equations. One would simply find that a constant weight of

decomposition products occurred. This is apparently the case for large

amounts of Freon 113, as discussed at the end of Section D. However, for

small amounts, the reaction must approach 1st order.
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2. Development of Equations.

Assume for the first case that we have a set of n equations of

the form n where n is the total number of compounds
C.,-- ED.. C.

1 j= 1 3 

i = 1, n; j = 1, n. This notation is meant to signify that compound 1, C1 ,

decomposes into D 1 1 parts of C 1 , D 2 1 parts of C2 .... , Dnl parts of C n

Similarly compound 2, C2, decomposes into D12 parts C
1
, D2 parts C, .

etc. Let ci the observed amount of compound i and cP = the initial amount

of compound i before decomposition. Then we have the simultaneous set of
equations c. = to be solved for c.equations c. = E D.. c ° to be solved for c

j j=l 13 3 J

3. Solution of Equations.

The solution of these equations is fairly straightforward, but

tedious for hand calculation for more than a few components. Consider a

very simple case in which one compound, E, decomposes 10% on charcoal

into compound A, while compound A, if originally present, has decomposed

20% into compound E. In otherwords, they have partially approached an

equilibrium. A third component X doesn't further decompose. Assume

that 3. 1 mg. of compound E, 1. 9 mg. of compound A, and 5 mg. of com-

pound X have been found. What were the original amounts of compounds

-18-
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EC, A, and X before the decomposition? Let e ° and e represent the ori-

ginal and final amounts of compound E with a similar notation for com-

pounds A and X.

The following equations then express the decomposition:

1. E -- >.9 E+. 1A+ OX

2. A ->.2 E+ .8A+ OX

3. X--0 E + OA + IX

or the equations to be solved for e 0 , a 0 , and x

4. e= .9e ° + .2a0 + Ox = 3. 1

5. a=. le + .8a + Ox =1. 9

6. x= Oe + Oa ° + lx = 5

The solution to these simultaneous equations is:

e 0 = 3 a = 2, x =5.

In matrix notation, which is well adapted to computer

solution, we can represent equations 1, 2, and 3 as column vectors

1,( 8 , . These can be combined to make a square
0 01 1 9 .2 

decomposition matrix, D. D = 1 .8 0 Let the compou
0 1 and t

present before decomposition be a column vecto c = a f and t/

observed amounts of compounds be the column vecto:

Lnds

he

r -3.1 

we have the matrix equation

Dc = C

or, (1 .8 0 a ° . 9

n
This is the matrix equivalent of Z D.i c. = ci

j=l 

-19-
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7. c = D1 c

1 9 .2 0 -1 /3.1 143 -. 2857 o \
where, D c = .1 . 8 0 1.9 = 1429 1.286 0

o 0 1 5 0 0 1

5
Matrix D and hence D 1 can be finally established for any set of compounds

as long as the percent decomposition is independent of the amounts of com-

pounds present. Equation 7 is to be solved and involves only D'
l

, known,

and c, measured. If not many compounds decompose, or the amount of

decomposition is small, matrix D will have most of its diagonal terms

nearly equal to 1 and most of its off-diagonal terms equal to 0. This fact

simplifies calculation of the inverse. The dimension of the matrix will be

equal to the total number of possible compounds.

Solution to equation 7 may have some negative values on

occasion. This is obviously impossible and means that not as much of a

compound has been found as was expected from decomposition on charcoal

alone. Probably the best thing to do is set negative values to 0. If this

occurs too frequently, one or more off-diagonal terms in the "decomposition

matrix, " D are obviously too large.

Consider the data from the 90 day manned spacelab. Use only

equations 1-7 of Table 5 to calculate corrected compositions. An approxi-

mate hand solution to the compositions would be as shown in Table 6.

Columns 1 and 2 (of Table 6) are 12 actual compounds and their amounts

from this sample. Column 3 is the results of applying equation 1 (Table 5)

to the estimated amount of Freon 113 in column 9 to get the expected amounts

of Freon 113, C 2 F 3C1 and C 2 F2C12. Note that these are more than the ob-

served amounts for the last 2 compounds and hence they can be assumed to

be due to decomposition only.
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Column 4 applies equation 3 approximately to acetone. It

is assumed that the amounts of acetone from equations 2, 4, and 7 are

small compared to the amount that was not formed from decomposition.

The calculated amount of ethanol exceeds the observed amount. Ethanol

was probably not present in the original sample.

Columns 6-8 finish applying the remaining decomposition

equations.

Column 9 is the first estimate of the corrected concentrations.

A computer solution would proceed as follows: Reactions 1-7

are expressed as a matrix (Table 7).

This matrix also includes reactions such as MeOH--> 1.0

MeOH (i. e., no decomposition) to obtain the right number of dimensions.

This matrix is then inverted and column 2 in Table 6 is multiplied by it

to get correct values for column 9. Table 8 is the inverse matrix (calculated

by computer). for Table 7 and Table 9 is the computer calculation equivalent

to column 9 of Table 6. Note that there are several small negative terms

which should be set equal to zero.

Table 10 is the complete inverse decomposition matrix for 15

major components that is to be used for the correction of the analytical data

obtained in charcoal desorption studies. This is the matrix, D- 1 , to be used

inthe solution of Equation 7 above.

The appendix gives a version of a computer program that was

used to solve the matrix equations.

III. CONCLUSIONS

There is definite decomposition of many adsorbates on charcoal when

they are stripped by heat. The compounds to be regarded as at least partially

due to decomposition are:
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Ethane

Propane

Ethylene

Propylene

Butane

Butene

Ethanol

Methanol

Acetone

Acetaldehyde

B utanol

Fluo rotrichlo ro ethylene

Dichlorodifluoro ethylene

Traces of benzene and toluene almost always are present even in "clean"

charcoal. Large amounts, (>0. 01 p g/g. charcoal), except where removed

by the correction equations, are probably present in the original adsorbed

sample.

It is recommended that the inverse matrix of Table 10 be applied to

the results of previous charcoal analyses to correct for the effects of the

charcoal desorption. These corrections should be regarded as only approxi-

mate, but they represent the best approach available as of this date.
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TABLE I

LIST OF COUMPOUNDS FOUND ON CHARCOAL

Comnound

FiIEOICI 12
F R F C0 rl 1 3
FRFUC' 21
FRCE Or, 22
FKFIN 113
F i'FCI r 1 5L

FLt C R OF 0R N
T R I F -. UJO R 0 C lEF T ,1A Ml I
CA;.RoFCr. iTR/Fi\FlUlRInE-
F1 !YL FLUIJORIrE
Pt P i A FL J 0 ROt 1' h A \N ,E

HEXAF LU DI:OETI-'i\FIE
Vi YI. FLlUOPRIE
p IFLi. lOR OET H! Y I.Er
ThIFl. t)OROETHYLENE
TETR F I.. UR O ET HY L. EN E
TR IFI UOOC ETOP ITRIL E
. I THY L I FLUORO()SILAN

FLJO f OPROPANiE
T/IF'I LUO.NPROPAN['E.
PEN!iPFLJ)RCPfR0PANE
iE.x AF LtUl 0f OPfOP ANF. 
OCTAir LiJ)ROPRCfPAr E
TRJfTtF-TIHYl-F-.t0lROSILAN\IE
TRIF I UORPROPROP E
P ElT t FL.. JOR OCIPF OPE !E
FI Lt-X AF LU .OR :I-R O P E F
CCTAF FL L U 0tIO BE: U-T AiN E
T F I F L UC R BENZ E NEF
TL'TF FtL JPOF 0 lZ.E N\ZENE
HEXAF LIJOROBELiZE iE
C H L_. Nf OF DRfi'
MLETlYLF.JEF CilI.ORPIOE
CARFi:C'J 1 ETTRACHIL ORIDE
rEI t!YL CI-LOt IDE.

l, 3 -TRICII_CROETHAf;iE
1 2-,I CH LOR E f( HiH/flE
TFtIC FLN R.OFT LYLE E
TET F l' C 4LO)ROE T HYL EN F
1. -fICHLri -ROE TWtI-NE
] 1 9 ?-TRICHL. OROETH/iJE.
C -:LCp F.OACETYI. El[ !E
ETYIl CfH1IOR I[E
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Compt.
ID # 14W

1
2
3
4
5
6
7

5
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

31
32
323
34
35
3f:
37
38
39
4{0
41
42
43
44

i6

167
bi)13

4
9c

3
83

50t

19,

562
557
512
501
bO0
545
bib
50E
503

533
55G
b5u
535
544
5,6

5b4

1 46
147
14C.>

24
39
7
c

17
2i

105
11=

507
b17

12.1.00 

i 6 2092

1&t7. 39
1710no

7000 n

J,8n6

*3. 00

460 n 4
82.02

100o.02
c5.N2
96.16

90.n7

15,2. n3

92.20

132. 03

13 0. 09

C %} o 94
153.J ]
50°49

133 . 42
56.97

133.40

f0 49
6,4.52



TABLE 1 (Cont.)

Compt,.
ID # Compound I4IT

45 355 VINYL Crl IFE I6 ;t2 &s2.rO
4-b t 1 \ll/r:YL IiENE CIhLOhIDE 96 . 9°5
47 547 3-Ct-iLi 0RCPI R CPEN[F 76. o 3
4'8 l 115 PRC'PyL CHL.. IDE 78 5.4t

49 120 tLTF A/CHLOROE "rHPN.E 167. 05
5G 27 PIOP: G i . ORO2PENZE F;E 1 1.2 . 56

51 153 r; 1C:I. GROPENZE. INF. 147 o 1

52 19,, TLT PFUI_U)ROCHLO FO'ET-i A /NE 136.52
53 519 r(hi. gf OO DI FLLU'R0FTHANFI lAUO °50
54 b52 rICt:I OirFJIFL. Ui(ROEEiTHPE 1314 .9 4
55 502 T!IF I UO ROCHI-. O(OE 1HYI. ENE a60 'I tn
5C 504 FL.LI'O OC HrL. ORC OTH LEN rE ,! 0 o .F 

57 50; rIC iCI. ORODf'IFLUoUCEiTHYL.ENF 1,209.,
56 52 iL Cii COn 1FLtJOFROET HYL ELE 9E. R 0
59 71 F ET FP/NF 16 . h

60 5L, E FArE '0 .07
61 74 PCFP, NE 4 +N 9

62 6t pFUTAi':E 58o.1 2
63 7C ISSOIUT ANE. 58,, 1.2
64 b PE[.il ;rINFE 72 1.5

65 54 ISOFFNTANE 72.15
66 144 PIME1HYL PROFANE 66.l.8
67 33 E XF PE, IE L6.17
68 97 2-F :E 1 HYLPENTANE 72 . 1.5
69 197 3- PMiE THlYLPE PI TANE 6. 18

70 q4'4 PD IE 1 H-Y LBTLir A N, E £6. 17

71 996 2 -[?IMiTHYL FBUTANE 66 . 17
72 10 r,-I ,EF: T ANE 100 .20

73 139L 2 4-C IM ETlYLF ENTA NIE C0.21

74 154 2 3-C IMETHYLP ENTANE 100. 21
75 1'59 I i E T HY LPEr'.il TANF C 0 . 2o 

76 1l4 Tk f" E THYLLBUTANE 100c.2.1

77 87 N-OC1ANE 114.23
76 47 ISC-OCT/ANE 114 .23
79 14 2 34 -' -TRTIEThYL PENTANE i:, . 23

( 163 1- N NC. F A n 1 8. 6
81 138 T[<IMF IHYLH. EXANE 128626
82 159 2,2 t I-TRIMET HtY I. I-EXALNE lrŽ. 6
83 110 DECArE 142.29
84 6q AfCETYLEN[ :6 o. 0

85 9 E1 FhYLLNE 28.05
86, 69 'P RO F' LE NE 4 2 08
87 9 l PROPAfDI ENE 40 06

85 1 -7 I'V HYL E TYLENE 40 .07
89 549 . FTI YI 'ACETYLENE aq 0n9
90 66 3I -U .- IE 5 6 .1 0
91 67 2-FtU Lr'IE (CIS) 56010

92 6,: 2-EA'TEI£ (t LANS ) 56 o 1. 
93 8b 1.Ci -F IJT' I F rFE S 4I909
94 93 ISOFFITYLEF rJ 56.10
95 6 1 -FE F:TENE 70. 3
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TABLE i (Cont.)

Compt.
ID # Compound MW

96 bli 2-PE TEiE 70.13
97 123 CYCLC (;.PE:NT .'E 68 .11
96 171 2-':E 1 HYL-2-FUlJTENE 70 0 .3
99 55 ISC FI ERIE . ·11.

100 126 HEL>'F E L 4o.16
101 19q - I. iE>, NE 4 . 1C-
102 5, C1 C I. Cl-F XELIiE 2 .1 4
103 160 2 -NIE 1 HYL-i1-FP [NT NE N, 4. 16.
104 170 2 -P'THY L-2-FEN2TE NE Ef *1.6

105 164 2-F TI YL-1-BITENE &4I. 16
106 7C N'- ;-F PTE N F: .1 P1
107 166 3-I4tEFTENE \. , i1. .

108 73 PE L TIY C YC LOH-iE XF lNE 9, 17
109 162 2-OC' ENc 112.21.
i10 183 ClIIrE 1r .20
111 lt-U L r-L'i; - ILSCIi, TY LEIE 110.20 n
112 161 2,P i-TR(l'iE.THYL i-'E'TEtE 112o3.
113 Yt, .lY ¥F 'NE 104. 1.4
114 81 CYCLOPRDFANE 42.008
115 15 CY C L C PE'TAN E 70.1 3
116 23 CYCL.OHLxfNE L 4.1 .
117 12 , F EI HYLCYCLOPFFNTp.\!E tl.E. 1 1
il 8 4L [FI Pi;E I HYLCYCLO PE;,,TAN E 9 1,. F
119 56 KVETHYLCYCLOFiEXA,,,E 9 0.1 8
120 !4.r- niPE 1HYLCYCL(CHEXIANE 112.23
121 167 FTi:Y LCYCL OHEXArLE 1. 12.22
122 1ib 3 ,2-f IMETHYLCYCLOHtEXANENf (CI') 112.22
123 156 3 , 2-r. IMTHYLCYCL HEXANE (T ) 112.22
124 88 rECtL. IN 138.25
125 101 PECPI. IN SOMERS 138?25
126 14 E'P F FJE 78 o 11
127 2C TOL UF IE C92.13
128 2.2 r'- X L. ENE 1C:6,. .6
129 28 On-YI, EN 1 6.1.6
130 29 r-YiL ErNE 1C6, !6
131 82 Fl IHYL [E3FZENE 1 o 60 16
132 191 C' \ AFOAf ICS 120.1.9
133 51 TR TI'[ I Lr.. R E lREPZENE 120C.19
134 10u I"E$1TYLEE:E 120.19
135 1 j 'L E WYL T I IYI_ dEf\JZ I NE 1i) 20
136 42. ITN E ['E 11 6.15
137 145 P -F FOPYLPrENZE'iJE: 120 o 
136 150 C ULE'I', 120. C 
139 190 " 10 i .ROlATIcS 134. 9
140 5l TETF A 1ME TI. IYI.. I Eh lL E .lE134.21
1412 1 19 FIFrTF YI. 3F.FIZE-iE 154 021

142 157 ISOC FOP YI TCOLUErE 134.21
143 40 A' rI! Hl[ 1AENF LF).1 6
144 1Zj T-FL!TYL 3ENZLNE 134. 21
145 1Ji r;-lt:l YL [E NZENE 134 . 1
116 12. S LC-F:UT YL t3E.,;7EN 134.21
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TABLE I (Cont.)

Compt.
ID # Compound 4IW^

147 534 C11 HARO'VATICS 148.24
148 5 E tI'yLFIAPHTIHlALEFE 1-42.19
149 42 F. IrE1'HYLNAPhTHAL FNE 156.22
150 189 TEPT. GROUP C14 AROri. 131. 00
151 61 FUPFh, N £;.07
152 11Ls FLiFF t!RA L" c6. n
153 57 TLTIAi HYDROFU RAN 72.10
154 59 DIOXANE 88.1 0
155 4+ p;,E]'l TLFJRAN b2 .10
156 77 rIP: E ItIYLFURAN 9 6 .12
157 556 PIFE vEZOFURAN 1 c. 1
158 141 TNrj) I . E 117. 1.5
159 7b ShATOLF 131.*17
160 13 PETHYL AL.COHOL 32. 04
161 15 FTHYL ALCOHOL 46. 97
162 553 rTtHYL.ENE GLYCOL 62.07
163 37 \ALLYL ALCOHO.L 58.fl
164 75 N-PFCPYL ALCOHOL £0.09
165 25 ISOPF:OPYL ALCO;OHL 0 . n9
166 30 MN-BUTYL ALCOiOL. 7 . 12
167 173 T-FBTYL ALCOHiOL 74.12
168 174 SEC-E UTYL ALCOHC.L 74.12
169 26 ISOELTYL ALCOHOL 74.12
170 525 FTHYL. CELLOSOLVE 90.12
171 109 N-A;lYL Al COIiOL t . 15
172 125 FUFUF bRY'L ALCOHOL 96.10
173 181 ISCAFYL ALCOIH-OL. .. 8.15
174 552 4- FE I HY LBUTAfOL -2 .86.15
175 535 PIHENclL 94 .1 .
176 158 CYCL tCHEXYL ALCOtHOL 134.21
177 168 2--'LXYL ALCOI.OL 1C2. 1
178 184 CAPF'YL ALCOHOL 130.23
179 520 2-ETFYL.31.1TYL ALCOHOL 102.17
180 521 2-F 1PYL -EXYL ALCOHOL 130.23
181 554 t'Y( FRCXYG;UINOLINE 15.15
182 8 ACETONE -5.0n
183 11 rTnETF'YL ETHYL KETONE 72.1`0
184 192 rFLTiYeL PROPYL FtTONE 36.13
185 117 2-P F. iHYL-3-tU.TANrO\:]iE 6 . 13
186 16.5 ACETYL ACETOc:E 1 uC. 1
187 19 r:EIHYL ISOFUTYL KEToNE 100.!6
188 177 CYC L(C HEXANOr iE 9e. 14 
189 52&, ACFTOPHHEr.'OHE 120.14
19U 54bt ET.'YIELNE OXIDE 4 LI . 05
191 187 FrIFETHYL ETHEFR 46.n07
192 b DIF Ti:YL. THER 74.12
193 3Li TSCOPF OPYL_ ETIHER 102.17
194 555 r P;LTtYLISOFP'ROcYL. ETHEK 74q. 2
195; '9. r: I FrIr '1r XOYBEENZ ENE 13, . IF
196. 10 FLF'r2L ETHER 19CA.25
197 31 AC E TALDEHYDE 44 ,*5
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TABLE 1 (Cont.)

Compt.
ID # Compound

19b6 b18 AC FCL LI- 5(. 06,
199 522 PRO FP 1. 0FIAI DEFIYDE 8 F .· ng
200 79 PUTYRAL DEIYLE 72.10
201 179 CRCTONALDLItyIDE- 70.09
202 175 rPENZALD r HYL Clbc. 12
203 9 Ml:T yL ACETATE 74 0 n0
204 84 F THF I FORMATE 7 1 . n',
205 T32 FllYIY ACETATE L8. 10
206 527 FEThTYL LACTATE iC4.11
207 36 PROPYL ACETATE 1C 2.13
208 6t :: L LTHlyL - 13-GU1 y 1 I 1 2 .1.3
20)9 O r0 El' ETY'r L YET HACNYL ATE lL no12
21t, 12 ' ISOPOPYL ACETATE 12o. I 1
211 516 FTlF-Y L.ACTATE 11.8.013
212 90 PUTYL ACETATE 11t.1.6
213 111 SC.: TYL ACETATE 1 1 6 . 1. 
214 524 \CELLOSOLVE ACETATE 132.16
215 112 AViYL ACETATE 130..13
216 514 FUTYI LrACTATE 1L-6. 19
217 539 FPHTHpLATE ESTER 0.no
218 182 ACFTONITRILE 41.05
219 89 ACETIC ACID :£0.05
220 18 G PIELTFCXYACETIC A/CID 90.· 0.
221. 18, ACH<YIlIC ACID 72.n0
222 103 PkOFIONIC ACID 74.08
223 99 VALERIEC ACID 162.13
224 85 rEThFyL AMINE! 31.0g
225 124 0DIrETHYL APINE 45.08
226 172 T-EUTYI_ APMINE 73.1-4
227 116 ri"E1lYL MERCAPTAN 4l. 11
228 122 CARFCN DISULFIDE 76.1 4
229 530 CAF,'FCN DXYSULFILE 0. n07
230 60 DIr:FTiHYL SULFIDE. 62.13
231 514f, DIrMETf'HYLDISUI FIFE $14.20
232 114 FTHYL M EP.CAPQIAr t2.13
233 1014 PFrCF'L vIF:RCAPTAI[. 7 6.175
234 134 TI-i CF iENE 6 1. .
235 511 PIFII-,YL SULFIDE S90.1
23b 132 Pr ET- I LTHTO PtE HIE $8. 17
237 1 6. DPF1 1YLTHTIOFHE. E 112.19
238 131 P'L F YLE THYLTHtIOFHENE 16 ,. 
239 1 CAi-OC: N DIOXIDE 44 00
240 106 !Y[Fr GE\ FLUORIEE 0.0]
241 1U7 HY[F(:'FiN SULFIDE L-.n2
242 1i29 P;ITCUS OXIDE '.nl
243 13t- 'Y [rr'fCGF 2 o02
244 18 5 rIlT,:clMETF!A NE 1i. 14
245 186 FiLICONE SI-R 0.00
246 53i SCIFt R DIOXIDE 6t4.06
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TABLE 2

ELEMENTAL ANALYSIS OF AC CHARCOAL

Element

Boron

Silicone -

Manganese

Potassium

Antimony

Gold

Magnesium

Iron

Aluminum or

Vanadium

Calcium

Sodium

Titanium

Copper

Nickel

Zinc

Tungsten

Platinum

Silver

Chromium

Lithium

Tin

Lead

Platinum Crucible

trace

trace

-moderate

trace

N. D.

moderate

moderate

major

trace

mrinor .

moderate

mrnino r

trace

trace

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

Gold Crucible

trace

majo-r

trace

modratc e

trace

tracde

moderate

moderate

major

trace

.minor --

mo:dera-te

'-mino-r-

trace

trace

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

Trace

Mino r

Moderate

Major

< 0. 01%

0. 01 - 0. 1%

0. 1 - 1. 0%

> 10%
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ANALYSIS OF

TABLE 3_

CHARCOAL SAMPLES FOR CHLORINE

Cornpound
Tested

Amount *
used, Znm.

Charcoal before Charcoal after
vacuum stripping vacuum strip-

p.m. ping pLm.

Collected by
desorption, m

Blank

Methyl
C hloroform

Freon 113

HC1 (36% acid)

B lank

Methyl
Chloroform

Freon 113

HC1 (36% acid)

50

42

58

202

Water
Soluble

83

87

78

75

167

2 32

,im = micromoles

-30-
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Total
C1

80

226

131

72

Total
C1

171

98

67

Water
Soluble

180

118

75

137

343

Total Cl

.4

.5

.8

1. 6

274

274



TABLE 4

Amount Freon 113

Introduced, mg

500

620

95

97

10

10

9. 6

Lengtl

d

Effect of Time of Residence and of Concentration of Freon 113

on the Amount of Decomposition of Freon 113

Adsorbed on 4 g of Charcoal

h of Stay Fraction of Total Amount Freon 113 Amount

ays Sample Analyzed Recovered, mg Recover

0

2

0

2

0

0

2

01

1 2

1

1
97'T'

1

203951
203

1
-6-
1

1

1
31

1
20

300

228

76

5. 9

4. 9

0. 76

0.2.

0. 1

0.28

C1ECCF2

ed, mg

. 107

. 108

0. 03

0.22

3. 2

1. 1

Ratio

F113/ClFCCF 2

2800

2100

2200

26

1. 5

.68

.567

0. 4

0. 05

. 36

0.25

5. 4

\,l

I
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TABLE 5

APPROXIMATE VALUES OF DECOMPOSITION COEFFICIENTS

1. Freon 113

2. Ethanol

3. Acetone

4. Methyl Ethyl
ketone

5. Ethyl Acetate

6. Methyl Iso-
butyl ketone

7. Isopropanol

8. THF

9. Butanol

0. 8 Fl13+ 0. 2 C
2

F
3
Cl +0. 01 C 2 F

2
C1 2

. 95 EtOH + 0. 03 MeOH + 0. 02 acetone

0. 8 acetone + 0. 2 EtOH

0. 8 Mek + 0. 1 acetone + 0. 1 butanol

0. 6

0. 5

EtAc + 0. 3 EtOH + 0. 1 Methanol

MIBK + 0. 5 C3H 636g

0. 8 Isopropanol + 0. 15 acetone + 0. 05 C 3H
6

0. 8

0. 7

THF + 0. 2 Furan

Butanol + 0. 3 B;utene
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TABLE 6

APPROXIMATE SOLUTION OF ONE SET OF

90-DAY MANNED SPACELAB TESTS

(2) (3) (4) (5) (6) (7) (8) (9)

(1) Freon 113

(2) C2 F
3
C1

(3) C F C12

(4) Ethanol

(5) Ethyl
Acetate

(6) Methanol

(7) Acetone

(8) Isopropanol

(9) Butanol

(10) Methyl
ethyl ketone

(11) Methyl
ethyl iso-
butyl ketone

(12) Propane

.22

.0043

.22

.05

.00051 .002

.0078

.0083

.0042

.32

.008

.00024

.018

. 08

.32 .0022

.0022

.018

.0051

.0043

-33-

(1)

.27

0

0

.004

.008

. 001

0

. 014

. 003

.4

. 01

0

. 022

.0015

.01

b01 . 01

. 01 0
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TABLE 7'

DECOMPOSITION

(1) (2) (3) (4)

MATRIX FOR TABLE 5

(5) (6) (7) (8) ' (9) (10) (11) (12)

) Freon 113

) C2 F 3 C1

*) CzF2 C1 2

) Ethanol

) Ethyl acetate

*) Methanol

) Acetone

) Isopropanol

)B utanol

i) Methyl
ethyl ketone

) Methyl iso-
butyl ketone

) Propane

.8

.2 1

. 01 1

.95 . 3

.6

.03 .1

. 02

-34-
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TABLE 8

INVERSE DECOMPOSITION MATRIX FOR 12 COMPOUNDS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1) Freon 113 1. 25

) C 2 F 3 C1 -0. 25

3) C 2 F 2 C1 2 -0. 01

4) Ethanol

5) Ethyl acetate

S) Methanol

7) Acetone

3) Isopropanol

)) Butanol

)) Methyl ethyl
ketone

1) Methyl iso-
butyl ketone

') Propane

1. 0

1. 0

1.06 -0.53

1.67

-0.03 -0.15

-0.03 0.01

-0.26 0. 05

1. 0 0.01

126 -024

1.25

1.0 -0.12

LZ5

2. 0

-0.06 -1.0 1.0

-35-
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TABLE 9

CALCULATION OF CORRECTED COMPOSITIONS

FOR 90-DAY MANNED SPACELAB

Compound Observed Amount Corrected Amount

1. Freon 113 0.22 0.275

2. C2 F3 C1 0. 0043 -0. 051

3. Cz2 FC12 0. 00051 -0. 002

4. Ethanol 0. 0078 -0. 080

5. Ethyl acetate 0. 0083 0. 014

6. Methanol 0. 0042 0. 005

7. Acetone 0. 32 0. 397

8. Isopropanol 0. 008 0. 010

9. Butanol 0. 00024 -0. 002

10. Methyl ethyl ketone 0. 018 0. 023

11. Methyl isobutyl ketone 0. 0051 0. 010

12. Propane 0. 0043 -0. 001
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(1) (2)

1.25 .. ., I.,

-0.25 1.0

TABLE 10

INVERSE DECOMPOSITION MATRIX FOR 15 COMPOUNDS

1.0:! i I I___ _1.0 I I I I I .1 I I
A An /- n 7 i ! n IAC Ir nci n r%7 I I
1 .Ub; -o. 5 U.U0 u.u3

__-__ ____ 1.67 _ _

-0.03 -0.15 1.0 0.01 
I _- . _._. , i 

I _ -0.031 0.01 j 1.26 -0.24 -0.16

_ _ _ _ _ _ ,__ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ 1 .25 1 
1.43 -0.18

___ ____ r____ _ _ r__ ~ 1~ i :1.251 

2.0 

_ i | I _ | -0.06 -1.0 1.0 j
I| 1 _____ 1 __ _____ 1 1,1.25 

· '-0.25 1.0

t!I -0_.43 0.05 I 1.01

The rows and columns correspoDnd to these compounds:

(1) Freon 113

(2) C2 F3 C1

(3) C2 F
2
C1 2

(4) Ethanol

(5) Ethyl acetate

(6) Methanol

(7) Acetone

(8) Isopropanol

(9) Butanol

(10) Methyl ethyl I

(11) Methyl isobut:

(12) Propane

(13) Tetrahydrofure

(14) Furan

(15) Butene

ketone

yl ketone

an

-37-
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APPENDIX

Presented in this appendix is the listing of the program used for

the solution of the matrix equations derived in Section F of the Technical

Discussion. This is intended to be a sample program only. The program

is dimensioned for 12x12 matrices and the dimensions have to be changed

accordingly from larger matrices. The major part of the program consists

of the IBM LLSQ Scientific Subroutine with the first page added to control

input and output. This portion needs to be rewritten according to the de-

sired output. The input consists of matrix A (the decomposition matrix)

and the vector B, the amount of each compound present. Matrices AT and

BT are working areas, as well as vectors AUX and IPIV.

For matrices of dimension N where N is different from 12, all

values of 12 on the first page should be replaced by the value of N. Matrix

AUX should be dimensioned ZN.

Subroutine LLSQ is a useful general purpose routine to solve matrix

equations of the form Bj - AXj = min; A is an m x m matrix(m- n), B is

anmx dmatrix, and X is annxlmatrix. In other words, it will give a least

squares solution to an over-determined system of linear equations. If one

has a set of m unknowns and n equations where m > n, there is generally no

solution for the m unknowns but there is a set of values which will make the

sum of the squares of the residuals of the n equations a minimum. When m

n, the solution is equivalent to the solution of a set of m unknowns in m equa-

tions. When m = n =1 and B is the unit matrix, X is the inverse of A. Refer-

ence 6 contains a complete description of LLSQ.

The input to this sample program consists of a set of cards in two

groups. The first group contains the non-zero terms of the A, one term to

a card, matrix in format (2I3, F8. 5) with the first two fields containing the

i and j values and the third field the value of the component. When both i and

j reach 12 the program expects the following 3 cards to contain the values of

the B vector, 5 to a card, in format (5F 14. 5). The first call to subroutine

LLSQ calculates the vector X and the second call calculates A- 1
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LISTING OF COMPUTER PROGRAM

FOR SOLUTION OF MATRIX EQUATIONS

10/12/72 PAGE I

DIMFNSION A(12,12).X(12,12),B(12),AT(12,12),BT(12,12)
1 ,IPIV (12),AUX(24)

1 DO 2 I=.,12
DO 2 J=1,12
A(I,J)=O.

2 BT(I,J)=O.
3 READn(7,50) I,J,A(IJ)

50 FORMAT(pI3,F8,5)
IF (I.NE.12.0R.J.NE.12) GO TO 3

4 REAn(7,1) l(R(I),I=1.12)
51 FORMAT(SF14.5)

.00 5 I=1,12
BT( I1)=B(I)
DO 5 J=1,12

5 AT(T,J)=A(ITJ)
WRITE (6,52) (,(AT(IJ)J,=112)I=1, 12),(BT(I,1)I=1,12)

52 FORMAT (1X,12F8.5)
CALL LLSQ( ATBRT, 12,12,1,XIPIVOO001, IERAUX)
WRITE (6(54)
WRITE (h.53) IPIV*IER
WRTTE (6,54)
WRITE (6,52) ((X(IJ),J=,1i2),I=1.12),AUX

53 FORMAT (1213)
WRITE (h,54)
DO I=1,12
DO 6 J=l,12
AT( T,J)=A(I.J)

6 BT(I,J)=O.
DO 7 I=1912

7 BT(II)=1.
WRITE (,.54)
WRITE (6h52) ((AT(IJ),Jl12)I=2),=1 2((T(IOJ),J=ll2),-l.l2)

54 FORMAT (lHO)
WRITE (6.54)
CALl. LLQ(ATRT.12,12,12,X, IPIV. .0001IERAUX)
WRITE (6,53) IPIVIER
WRITE (A,54)
WRITE (6,52) ((X(IJ),J=1,12)*I=1, 12)
ENn
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LISTING (Cont.)

10/12/72 PAGE

SURROUTINE LLSQ (A,B.MeNL*XIPIVEPSIER,AUX)
DIMFNSION A(1)R(1)*,X(1),IPIV(1)oAUX(1)
IF(M-N)30,1 ,1

1 PIV=O,
IENID=O.
DO 4 K=IN
IPIV(K)=K
H=O.
IST = IEND + 1
IEND = TEND + M
DO 2 I = IST, IEND

2 H= H + A(I) * A (I)
AUX(K) H
IF (H- PIV)4,4,3

3 PIV H
KPIV = K

4 CONTINUE
IF (PIV) 31,31,5

5 SIG = SORT (PIV)
TOL = SIG * ARS(EPS)

C
C DECOMPOSITION LOOP

LM=L*M
IST=-M
00 21 K=1,N
IST=IST+Fi+l
IEND =IST+M-K
I=KpIV-K
IF(I)8,8,6

C
C INTERCHANGF K-TH COLUMN OF A WITH KPIV-TH IN CASE KPIV.GT.K

6 H=Al.X(K)
AUX(K)=AUX(KPIV)
AUX(KPIV)=H
ID=I*M
DO 7 I=ISTIEND
J=I+ID
H=A(I)
A(I):A(J)

7 A(J)=H
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LISTING (Cont.)

10/12/72 PAGE 2

C COMPUTATION OF PARAMETER SIG
8 IF(K-1)11,11,9
9 SIG=O,

DO 10 I=IST,IEND
10 SIG=SIG+A(I)*A(I)

SIG=SQRT(STG)
C
C TEST ON STN(UI.lARITY

IF(SIG-TOt.)32,32911
C
C GENERATE CORRECT SIGN OF PARAMETER SIG

11 H=A(IST)
IF(H)12,13.13

12 SIG=-SIG
C
C SAVF INTERCHANGF INFORMATION

13 IPIV(KPIV)=IPIV(K)
IPIV(K)=KPTV

C
C GENFRATION OF VECTOR UK IN K-TH COLUMN OF MATRIX A AND OF
C PARAMETER RETA

BETA=H+sIG
A(IST)=RETA
BETA=1./(SIG*RETA)
J=N+K
AUX(J)=-SIG
IF(K-N)14,19,19

C
C TRAr!SFORMATION OF MATRIX A

14 PI\I=O.
ID=o
JST=K+l
KPIV=JST
DO 18 J=JST,N
ID=TD+m
H=O.
DO 15 I=ISTIEND
I'I=I+ID

15 H=H+A(I)*A(II)
H=BFTA*H
DO 16 I=ISTIEND
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LISTING (Cont.)

10/12/72 PAGE 3

II=I+Io
16 A(IT)=A(II)-A(I)*H

C
C UPDATING OF ELFMENT S(J) STORED IN LOCATION AUX(J)

II=IST+ID
H=AUX(J)-A(II)*A(II)
AUX(J)=H
IF(H-PIV)llA,1817

17 PIV=H
KPIV=J

18 CONTINUE
C
C TRANSFORMATIOrN OF RIGHT HAND SIDE MATRIX B

19 DO P1 J=K,LM,M
H=O.
IENP=J+M-K
II=IST
DO p0 I=J.IEND
H=H+A(II)*R(I)

20 II=:I+1
H=BETA*H
II=IST
DO 21 I=J,IEND
B(I)=B(I)-A(II)*H

21 II=II+l
C END OF DECOMPOSITION LOOP
C
C
C BACK SUBSTITUTION AND BACK INTERCHANGE

IER=O
I=N
LN=L*N
PIV=1./AUX(2*N)
DO 22 K=N,IN,N
X(K)=PIV*B(I)

22 I=T+M
IF(N-1)26,26,23

23 JST=(N-.)*M+N
DO 25 J=2,N
JST=JST-MI-
K=N+N+1-J
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LISTING (Cont.)

10/12/72 PAGE 4

PIV=1I/AUX(K)
KST=K-N
ID=TPIV(KST)-KST
IST=2-J
DO p5 K=1,I
H=R(KST)
IST=IST+N
IENn=IST+J.2
II=JST
DO p4 I=IST,IEND
II=II+M

24 H=H-A(IJ)*X(I)
I=IST-1
II=T+ID
-X(I)=X( II)
X(II)=PIV*H

25 KST=KST+PI
C
C
C COMPUTATION OF l.EAST SQUARES

26 IST=N+1
IErJn=O
DO 29 J=,ltl.
IEN=:IFND+M
H=O.
IF(M-N)29,?9,27

27 00 28 I=IST,IEND
28 H=H+B(T)*B(I)

IST=IST+M
29 AUX(J)=H

RETURN
C
C ERROR RETURN IN CASE M LESS THAN N

30 IER=-2
RETURN

C
C ERROR RETURN IN CASE OF ZERO-MATRIX A

31 IER=-1
RETURN

C
C ERROR RETTIJRN IN CASE OF RANK OF MATRIX A LESS THAN N
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10/12/72 PAGE 5

32 IER=K-1
RETjURN
END
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